9 research outputs found

    A Distributed Frank-Wolfe Algorithm for Communication-Efficient Sparse Learning

    Full text link
    Learning sparse combinations is a frequent theme in machine learning. In this paper, we study its associated optimization problem in the distributed setting where the elements to be combined are not centrally located but spread over a network. We address the key challenges of balancing communication costs and optimization errors. To this end, we propose a distributed Frank-Wolfe (dFW) algorithm. We obtain theoretical guarantees on the optimization error ϵ\epsilon and communication cost that do not depend on the total number of combining elements. We further show that the communication cost of dFW is optimal by deriving a lower-bound on the communication cost required to construct an ϵ\epsilon-approximate solution. We validate our theoretical analysis with empirical studies on synthetic and real-world data, which demonstrate that dFW outperforms both baselines and competing methods. We also study the performance of dFW when the conditions of our analysis are relaxed, and show that dFW is fairly robust.Comment: Extended version of the SIAM Data Mining 2015 pape

    A Comparison between Deep Neural Nets and Kernel Acoustic Models for Speech Recognition

    Get PDF
    We study large-scale kernel methods for acoustic modeling and compare to DNNs on performance metrics related to both acoustic modeling and recognition. Measuring perplexity and frame-level classification accuracy, kernel-based acoustic models are as effective as their DNN counterparts. However, on token-error-rates DNN models can be significantly better. We have discovered that this might be attributed to DNN's unique strength in reducing both the perplexity and the entropy of the predicted posterior probabilities. Motivated by our findings, we propose a new technique, entropy regularized perplexity, for model selection. This technique can noticeably improve the recognition performance of both types of models, and reduces the gap between them. While effective on Broadcast News, this technique could be also applicable to other tasks.Comment: arXiv admin note: text overlap with arXiv:1411.400

    Kernel Approximation Methods for Speech Recognition

    Get PDF
    International audienceWe study the performance of kernel methods on the acoustic modeling task for automatic speech recognition, and compare their performance to deep neural networks (DNNs). To scale the kernel methods to large data sets, we use the random Fourier feature method of Rahimi and Recht (2007). We propose two novel techniques for improving the performance of kernel acoustic models. First, we propose a simple but effective feature selection method which reduces the number of random features required to attain a fixed level of performance. Second, we present a number of metrics which correlate strongly with speech recognition performance when computed on the heldout set; we attain improved performance by using these metrics to decide when to stop training. Additionally, we show that the linear bottleneck method of Sainath et al. (2013a) improves the performance of our kernel models significantly, in addition to speeding up training and making the models more compact. Leveraging these three methods, the kernel methods attain token error rates between 0.5% better and 0.1% worse than fully-connected DNNs across four speech recognition data sets, including the TIMIT and Broadcast News benchmark tasks

    Kernel Approximation Methods for Speech Recognition

    Get PDF
    We study large-scale kernel methods for acoustic modeling in speech recognition and compare their performance to deep neural networks (DNNs). We perform experiments on four speech recognition datasets, including the TIMIT and Broadcast News benchmark tasks, and compare these two types of models on frame-level performance metrics (accuracy, cross-entropy), as well as on recognition metrics (word/character error rate). In order to scale kernel methods to these large datasets, we use the random Fourier feature method of Rahimi and Recht [2007]. We propose two novel techniques for improving the performance of kernel acoustic models. First, in order to reduce the number of random features required by kernel models, we propose a simple but effective method for feature selection. The method is able to explore a large number of non-linear features while maintaining a compact model more efficiently than existing approaches. Second, we present a number of frame-level metrics which correlate very strongly with recognition performance when computed on the heldout set; we take advantage of these correlations by monitoring these metrics during training in order to decide when to stop learning. This technique can noticeably improve the recognition performance of both DNN and kernel models, while narrowing the gap between them. Additionally, we show that the linear bottleneck method of Sainath et al. [2013a] improves the performance of our kernel models significantly, in addition to speeding up training and making the models more compact. Together, these three methods dramatically improve the performance of kernel acoustic models, making their performance comparable to DNNs on the tasks we explored

    Kernel Approximation Methods for Speech Recognition

    No full text
    International audienceWe study the performance of kernel methods on the acoustic modeling task for automatic speech recognition, and compare their performance to deep neural networks (DNNs). To scale the kernel methods to large data sets, we use the random Fourier feature method of Rahimi and Recht (2007). We propose two novel techniques for improving the performance of kernel acoustic models. First, we propose a simple but effective feature selection method which reduces the number of random features required to attain a fixed level of performance. Second, we present a number of metrics which correlate strongly with speech recognition performance when computed on the heldout set; we attain improved performance by using these metrics to decide when to stop training. Additionally, we show that the linear bottleneck method of Sainath et al. (2013a) improves the performance of our kernel models significantly, in addition to speeding up training and making the models more compact. Leveraging these three methods, the kernel methods attain token error rates between 0.5% better and 0.1% worse than fully-connected DNNs across four speech recognition data sets, including the TIMIT and Broadcast News benchmark tasks

    Kernel Approximation Methods for Speech Recognition

    No full text
    We study large-scale kernel methods for acoustic modeling in speech recognition and compare their performance to deep neural networks (DNNs). We perform experiments on four speech recognition datasets, including the TIMIT and Broadcast News benchmark tasks, and compare these two types of models on frame-level performance metrics (accuracy, cross-entropy), as well as on recognition metrics (word/character error rate). In order to scale kernel methods to these large datasets, we use the random Fourier feature method of Rahimi and Recht [2007]. We propose two novel techniques for improving the performance of kernel acoustic models. First, in order to reduce the number of random features required by kernel models, we propose a simple but effective method for feature selection. The method is able to explore a large number of non-linear features while maintaining a compact model more efficiently than existing approaches. Second, we present a number of frame-level metrics which correlate very strongly with recognition performance when computed on the heldout set; we take advantage of these correlations by monitoring these metrics during training in order to decide when to stop learning. This technique can noticeably improve the recognition performance of both DNN and kernel models, while narrowing the gap between them. Additionally, we show that the linear bottleneck method of Sainath et al. [2013a] improves the performance of our kernel models significantly, in addition to speeding up training and making the models more compact. Together, these three methods dramatically improve the performance of kernel acoustic models, making their performance comparable to DNNs on the tasks we explored

    Kernel Approximation Methods for Speech Recognition

    No full text
    International audienceWe study the performance of kernel methods on the acoustic modeling task for automatic speech recognition, and compare their performance to deep neural networks (DNNs). To scale the kernel methods to large data sets, we use the random Fourier feature method of Rahimi and Recht (2007). We propose two novel techniques for improving the performance of kernel acoustic models. First, we propose a simple but effective feature selection method which reduces the number of random features required to attain a fixed level of performance. Second, we present a number of metrics which correlate strongly with speech recognition performance when computed on the heldout set; we attain improved performance by using these metrics to decide when to stop training. Additionally, we show that the linear bottleneck method of Sainath et al. (2013a) improves the performance of our kernel models significantly, in addition to speeding up training and making the models more compact. Leveraging these three methods, the kernel methods attain token error rates between 0.5% better and 0.1% worse than fully-connected DNNs across four speech recognition data sets, including the TIMIT and Broadcast News benchmark tasks
    corecore